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Synopsis

We have studied theoretically the sharing of energy among the constituents of a polyatomic 
medium in random atomic collision cascades initiated by heavy atomic particles. Our main 
interest was to estimate the significance of possible nonstoichiometric effects as they might be of 
interest in radiation damage and sputtering.

It is assumed that primary and recoiling particles slow down by random collisions, scattering 
and stopping being described according to the framework of Lindhard, Scharff, and coworkers. 
Collision cascades are characterized quantitatively by the recoil density and the slowing-down 
density. The former quantity specifies the number and energy distribution of recoil atoms of the 
various species in a cascade and is of particular interest in radiation damage problems. The latter 
quantity deals with the number and energy distribution of moving atoms in a stationary state 
and is of particular interest in sputtering problems. Both quantities are calculated for slowing
down in an infinite medium of uniform composition. We determine explicitly the asymptotic 
expressions at high ion energy as compared to the recoil energy. Deviations from this asymptotic 
behaviour are studied, too.

We find nonstoichiometric effects in both recoil and slowing-down density, and these effects 
are determined not only by different binding energies of different atomic species. A key role is 
being played by the mutual partial stopping cross sections of the constituent atoms of the me
dium. It turns out that deviations from stoichiometric behaviour are independent of concentra
tion in case of the slowing-down density, but dependent on concentration in case of the recoil 
density.

A preliminary account of this work has been reported at a recent conference0).
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1. Introduction

When an ion beam hits a solid target, the kinetic energy of the ions is 
dissipated among the nuclei and electrons of the medium. This energy dissi
pation may result in a number of observable effects such as sputtering, 
disordering, ionization, dissociation, etc. The theory of energy dissipation in 
random and crystalline media has been developed in some detail, mostly for 
random, monatomic targets (for a recent review see, e.g., ref. 1). One of the 
central problems concerns the sharing of energy between the electrons and 
the nuclei of the system, i.e. the relative significance of atomic displacement 
effects (e.g. sputtering, disordering) on the one hand, and electronic excitation 
effects (e.g. photon and electron emission) on the other hand. According to 
theoretical predictions2), this sharing of energy depends significantly on the 
atomic numbers and masses of the bombarding ion and the target atoms, and 
on the kinetic energy of the ion. When single crystals are bombarded, the 
sharing also depends on orientation3).

In the present paper we deal with the sharing of energy between the 
different atomic species of a polyatomic random medium, with special 
emphasis being laid on binary compounds or alloys. By analogy with the 
sharing of energy between electrons and nuclei, one would expect, qualita
tively, that the kinetic energy of a bombarding particle is not necessarily 
shared stoichiometrically between the different constituents of a polyatomic 
medium, i.e. that the sharing does not only depend on the composition, but 
also on the atomic masses involved. For example, in the limiting case of 
Rutherford scattering, it is easily seen that energy is dissipated preferentially 
among the lightest target nuclei, although even those, in this special case, 
receive several orders of magnitude less energy than what is dissipated 
among electrons.

When energy is deposited nonstoichiometrically, preferential displace
ment of one particular atomic species may result, and, moreover, composi- 
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tion changes may occur near the surface due to preferential sputtering. Most 
probably neither effect is determined by energy sharing alone, but an under
standing of energy sharing is a basic requirement for further theoretical 
treatment of effects connected with different binding energies and mobilities 
of the atomic species.

Nonstoichiometric effects have been observed in sputtering410). Their 
occurrence appears to be well established, whilst very little systematics has 
yet developed from these studies. The interpretation will almost certainly 
be complicated in view of the fact that the sputtering yield of a binary 
material, according to experimental observation, may be significantly higher 
or lower than the sputtering yield of either of the pure materials1012). Even 
rather small amounts of (alloyed or implanted) impurities may influence the 
sputtering yield significantly in either direction, dependent on the implanted 
species13). Surface topography appears to be a particularly important factor 
in determining the sputtering of alloyed targets14’ 15>. Systematic nonstoichio
metric effects may be observed in experiments with single crystalline targets 
such as GaAs16’ 17). In view of all these competing effects the present investi
gation is hardly more than one step forward on a rather long way towards 
a comprehensive understanding of the sputtering of compound targets.

While the theory of ion ranges in polyatomic targets is well developed18-20), 
the theory of energy deposition in such targets, apart from a few early inve
stigations of Frenkel-pair production21-23) has concentrated on the gross 
spatial distribution of deposited energy20- 24) and the overall sharing of 
energy between nuclei and electrons24’ 25). In view of a lack of knowledge of 
atomic scattering cross sections, it was not possible in the early work on 
Frenkel-pair production21-23) to arrive at quantitative criteria for the im
portance of nonstoichiometric effects in defect production. In fact, only the 
influence of different displacement threshold energies was considered in 
detail.

In this communication, we concentrate on random collision cascades 
mainly in diatomic solids, with the aim of estimating the relative and, less 
extensively, absolute numbers of recoiling or moving constituent atoms, 
mostly at keV bombarding ion energies where effects of nuclear stopping are 
most pronounced. Both with a view on potential applications, and in order to 
isolate possible nonstoichiometric effects, we are in particular interested in the 
case of widely different masses of the constituent atoms. This latter attitude is 
somewhat complementary to that of earlier investigators21-23) while it is 
similar to that of Kistemaker et.al26) who investigated energy dissipation in 
organic materials qualitatively.
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The basic integral equations used in the analysis (sect. 2) are equivalent 
to those used before23) in similar problems. The specific results are restricted, 
first to a special class of cross sections (sect. 3) and, second, to binary targets 
(sects. 4 and 6). The ternary case is considered briefly in sect. 5. We mainly 
consider asymptotic solutions for high ion energy as compared to the relevant 
recoil energies; in sect. 7 we briefly discuss the limitations to this approxima
tion. In sect. 8 we discuss some physical implications and the relation to 
experimental results.

Electronic stopping is neglected in part of the analysis. This approxima
tion restricts the energy range under consideration, but it will be shown that 
mostly absolute rather than relative numbers of moving atoms are affected by 
this simplification.

The presentation of the basic physical model will be kept brief. The 
reader who is less familiar with the notation and the way of argument is 
referred to ref. 1 for an introduction.

2. Basic Equations

Consider a random, infinite medium with Nj = 0CjN atoms of type j 
(atomic number Zj, atomic mass M/) per unit volume, aj (0 < a; < 1 ; 
2«; = 1) is the concentration of j-atoms, and N the atomic density [atoms/ 
cm3]. Let an atom of type i with initial energy E slow down in the medium.

For radiation damage calculations, we need the recoil density27) Ftj(E, Eq) 
which is defined as the average number of /-atoms recoiling per energy 
interval (Eo, dE0) in a collision cascade initiated by an z-atom with initial 
energy E.

For sputtering calculations we need the slowing-down density1- 28) 
Gij(E, Eq) which is the average number of J-atoms moving per energy interval 
(Eo, dE0) in the stationary state, with ip [z’-atoms/scc] slowing down from 
energy E.

Following a well-known procedure1), 
can be derived for Ftj and Gq,

^kj}
k J 2Vt7o

the following integral equations

dcfij(E, Eq)
(1)CCa

1 dE„

- J (2)
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where Fy = F^ÇE', Eo~) and Fy = FyÇE", Eo), etc. Furthermore, E' and 
E" are the energies of a scattered i-atom and a recoiling Å’-atom, respectively, 
after a collision that is governed by the differential cross section datk(E, E', E") 
The quantity t>0 is the velocity of a j-alom with energy Eo, and d(?ij(E, Eq)/ 
dE0 stands for

f doij(E,E',E")ô(E"-E0).

E', E"

The integral operators on the left-hand side of eqs. (1) and (2) are iden
tical. However, eq. (2) has the form of an equation determining the Greens 
function of this integral operator. Hence, the functions Fy and Gtj are inter
related in the following way,

(3)

Eq. (3) can be verified by insertion into eq. (1), interchanging the order of 
integrations, and utilizing eq. (2). Hence, once eq. (2) has been solved, Fy 
follows from Gij by integration according to (3). Both equations are equiva
lent to those used in ref. 23, although the present notation is more general. 
Furthermore, we use integral equations in the so-called “backward” form29), 
while previous authors mostly used the forward form.

Eq. (2) will have to be solved subject to the boundary conditions

Gv(E,Eo) = O for E<E0. (4)

In the special case of a binary medium, eq. (4) even holds for E < Eolytj 
where

yij = + Mj)2 (5)

The following (usual) approximations will be made in order to solve eq. (2):

i) No binding energy is lost by recoiling atoms,*
ii) Electronic stopping is separated according to the scheme of Lindhard 

et.al2k

* This simplification is dropped in appendix B.

Then eq.(2)reads

d(jik(E, T){Gtj(E,E0) - Gtj(E - T,E0) - G^-(T,Eo)}
k

+ XkSe, ik(E') —— Gij(E, Eff) = — —ÔtjÔ(E - Eo) 
k oE Nv0

(2a)
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where *S e,a(E) is the electronic stopping cross section for an z-atom colliding 
with a Å'-atom, and T the recoil energy. The cross section d(Jik(E, T) is that 
of elastic collisions.

It is most often possible to define an elastic-collision region2) E~Ee where 
electronic stopping is relatively small, so that it can be neglected as a first 
approximation. In this case we shall see (sects. 3, 4 and 5) that

Gtl(E,E„) ~ g^E^-E for E,«EXE, (6)

where gj^Eç) is a well defined function. The important features of eq. (6) 
are i) the linear dependence on E and ii) the nonoccurrence of the index i on 
the right-hand side.*  From eqs. (2a) and (6) one verifies immediately that 
the following extension holds for higher energies beyond the clastic-collision 
region

Gq(E,E0) ~ ^(E0)vi(E) for 7t0 « Ec and E > Ec (7)

where the Vi(E) obey the set of equations

f z7
dcïik(E, T){vi(E) - vi(E - T) - n(T)} + ^<x.kSe>ik(E')‘ —-vi(E) = 0 (8) 

k J k dE

This is the generalization to polyatomic media of an integral equation 
first derived by Lindhard etal.2>3°); a computer code for its solution has 
been worked out by Winterbon25). It is obvious from eqs. (6) and (7) that, 
in order to determine deviations from stoichiometric energy sharing, we 
need the gj(E) function rather than vz(E'). Since the former can be determined 
by solely considering the elastic-collision region, we shall restrict our attention 
to this region in the following sections. This simplifies the analysis substan
tially.

It may be stressed that the present argument is based on the existence of 
an elastic-collision region. For very different masses of constituent atoms, 
e.g. the case of a target containing very heavy atoms and hydrogen atoms, 
Ec may be prohibitively small. In such a case, caution has to be applied with 
respect to quantitative conclusions.

gj(E0) does, however, depend on all the constituents of the medium. See, e.g., eqs. (24a, b).
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3. Power Cross Sections

The solution of integral equations of the type of eq. (2a) is facilitated 
greatly by use of a power cross section of the form31)

da(E, T) = CE~mT~1~mdT; 0 < m < 1 (9)

This cross section describes approximately the scattering of two Thomas- 
Fermi atoms over a limited range of energy E and recoil energy T. The 
proper value of m depends essentially on the product E-T and on the ion
target combination31’ 20). At present, we apply eq. (9) in the form

dai}(E, T) = CijE-mi T^-^dT- 0 < T < yijE (10)

in order to allow greatest possible generality within the inherent simplicity 
of the power cross section.*  We note that eq. (10) is somewhat more general 
than the cross section used in ref. 23, since it allows for a variety of energy 
dependences of, e.g., the stopping power. We shall see below that this genera
lization is significant.

In sect. 6 we shall need more specified constants Cq.We use the two forms

Mi
Mi

and

The first choice31) corresponds to Thomas-Fermi scattering with the screening 
radius

czy = 0.8853 a0(Zf/3 + Z22'3)“1/2 (Ila)
and31’ 20>

21/2 = 0.327; 21/3 = 1.309; (lib)

The second choice28) corresponds to exponential interaction with32)

* Preferably one would use exponents instead of m/; however, this would mean a 
substantial complication in the algebra. In fact, we have not succeeded in deriving eqs. (25) and 
(28) in this latter case, although the Laplace transform can be carried out easily. One might also 
suggest to use an index mj. This would still be substantially more complicated than using 
and, more important, would be physically a less reasonable choice than the one adopted in eq. (10).
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and 28*

= const. = 0.219 X;

A'i} = 52(ZiZ;)3/4eV;

^0.055 = 15*;  z0 = 24.

Since we need mostly the cross sections at low particle energy Eo (in the 
eV region) when calculating recoil and slowing-down densities28- 34*,  it is 
mostly the expressions (10b), (11c), and (lid) that will be used in applica
tions. However, for low-mass ions - up to about oxygen - the Thomas-Fermi 
coefficients can be expected to be appropriate even in the lower eV-region, 
and will be used, therefore.

A convenient procedure of solving integral equations with a cross section 
like (9) has been described in detail by Robinson33* and one of the authors1* 
for the monatomic case. Straightforward generalization to the present situa
tion is possible. Inserting da^ÇE, T) as given by eq. (2a), setting Se,tk(E) = 0, 
introducing the variables

// = Eoeu; T = Eoev,

following the procedure of ref. 1, and taking the Laplace transfrom with 
respect to the variable u yields

 wE^i-1
Gij (s) 2 ßik (S) £ik (,s) — 2 ßik (s) Gkj (S) = 77 ^0

k k NvQ

where 

and

v8~mi
ßik(s) =--------- GCkCik

s - nu

(12)

(13a)

(13b)

By(æ, y) is the incomplete beta function,

B/.r.i;) = - Z)’’1 (14)

and Gq(s) the Laplace transform
poo

<5q(s) = due-8MG(E0ett,E0) (15)
J o

where use has been made of eq. (4).

* This value has been extracted from fig. 4 of ref. 28. It is rather uncertain. Note that for the 
high-energy portion of Born-Mayer interaction, a value about half as large was reported in ref. 28.
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Eq. (12) is a system of algebraic equations that splits up into separate 
subsystems, one for each target element j. All the subsystems have the same 
determinant, but different inhomogeneities on the right-hand side.

In accordance with eq. (6), we arc looking for solutions in the region 
E » Eo, i.e. large values of u. The procedure of determining asymptotic 
solutions is a generalization of the one described in detail in refs. 1,33,34. 
The main problem is to find the highest value of s, say s = sff where 
Gp(s) has a single pole. Then, Gtj(E,Eo) has the asymptotic form

Gy(E,E0)~ Ay(E/E0)^0> for E » Eo (16)

where Ay is the residuum of Gy(s) at s = Sy\ Some properties of the asympto
tic expansion will be analysed in the following in the special case of a binary 
target. At present we discuss, somewhat loosely, some simple consequences 
of eq. (12).

Poles of Gp(s) may occur at the zeros of the determinant of eq. (12) and 
the poles of the subdeterminants. According to (13a, b) poles of subdetermi
nants might occur at s = /m, and at some discrete negative values of s. 
The determinant, on the other hand, is expected to have a zero at s = 1, just 
as in the monatomic case. Indeed, from (13b), it follows that

eu(l) = 1. (17)

With this, the determinant achieves the form

D(l) = Det{öilc2ßuO)-ßik(l)} (18)
i

which is obviously zero. Moreover, it follows from (12) that

Gij(s) ~ Gkj(s) for s~l (19)

or, from (16), Ap = A*;.  This proves eq. (6). The remaining problem is to 
calculate gj(Eo). This will be done by evaluating determinants.

In appendix A we prove that s = sff = 1 is the highest singularity for a 
general polyatomic target. This is not surprising from a physical point of 
view. It is evident already from eqs. (1) and (2) that energy conservation in 
binary collisions requires solutions that are asymptotically (E » Eo) linear 
in energy, and independent of the bombarding particle.
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4. The Binary Case. I

With the abbreviation

=
yE2mrl

Nv0

the system of equations (12) has the solutions

where
£)(2) = — 1) + ^12612] [^22(^22 — 1) + ^2ie2i] ” /)i2^2i (22a)

— ^22(e22 O + /^21e21

= -ß21.

For s = S<°> = 1, and observing (17), we obtain

Gn(s) ~ b2i(s)-------------- , — tor ,s ~ 111V 7 21V 7 (s- 1)77(1)

, (i , Kwhere I) (s) = —D(s). !’
ds

Similarly, or by interchanging indices, we obtain

/ \ Z- / \ ^2^12(1) f 1

G22(s) ~ b12(s) ~ ------r for ~ I22V 7 12V 7 (s - 1)7) (1)

Applying inverse Laplace Transform, we obtain asymptotic solutions

bn(E) ~ G21(E) ~
E B^21(l)
Eo 7/(1) ’

or S'1(^0)
Blj21(l)

EOD'(1)
(24a)

E 712/312(1)G22(E)~ G12(E) ~ — ^?(1) ; or ^2(^0)
-^2^12(1)

(24b)

These equations provide the connection with eq. (6).

We drop the index (2> from D<2) for the rest of this section.
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(25)

where

(26)

the nuclear stopping cross section of an i-atom colliding with a

term. This yields, in the same notation as

(27 a)
7)'(1)

F22(E) ~ E12(E) (27b)
7/(1)

From this we obtain the ratio

(28)

where again eq. (26) has been used. Eqs. (25) and (28) show that in general

i) the ratio of the fluxes of moving 1-atoms to moving 2-atoms is propor
tional to the ratio of the respective concentrations, bid not nessecarily 
identical with it, and

ii) an even more pronounced deviation from stoichiometry is expected 
in the ratio of the number of recoiling 1-atoms and recoiling 2-atoms, 
since the concentrations enter nonlinearlv.

Sa(E) is 
Å-atom.

Next,

If we take the ratio of the fluxes of moving atoms of the two species, the 
determinant and the ion energy drop out, hence*

* We include the velocity v0 in p0G^-(E, Eo) because of the index j in v0 = \ 2E0/Mj. Note 
that both in sputtering theory28) and in eq. (3) it is actually this product that is important.

we insert eq. (24a, b) into eq. (3), and evaluate Eij to the highest 
power of E/Eo, i.e. the linear
eq. (24),

1 — nt 1

P0^11(7t) P0G21(7s) ^11 (^)

^0^12(7^) t?0G:12(E) u0G22(E)

ai •821(^0)

a2 S12(E0)

S«(E) - ßu(l) =
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5. The Ternary Case

We briefly mention the asymptotic solutions for the case of a ternary com
pound. From (12) we obtain.

Gn ~ ^21
D^E 

D™' Eo
(29a)

^12 ~ ^22
n(3)' e0

(29b)

E
^13 ~ ^23 ~ ^33 ~ jry3T'^~ (29c)

where

= ßzißsi + ^21^32 + (^23^31 (30a)

= cycl- perm. (30b)

/J33 = cycl. perm. (30c)

7)0)' = yD(3)(s)/s = 1 = (ßne'n + ß12e'12 + ß13e'13)I)^ + cycl. perm., (31) 
as

(32a)
7)<3>'

(32b)
D<3V

(32c)
7)(3)/

and the upper index (3) indicates the ternary case. Both D(ik\ e'ik, and ßik 
are taken at s = 1. The Bi are given in eq. (20). It is straightforward to 
determine relative magnitudes of the Gtk from eqs. (29—31).

By applying eq. (3) to the ternary case, we readily obtain

Evaluation of Ga and Fa in terms of stopping powers can be made by use 
of eqs. (35) and (26). We shall not go into any further details with the general 
ternary case.
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6. The Binary Case. II

In this section we discuss in more detail some implications of the equa
tions derived in sect. 4 for the binary case. For illustration we have evaluated 
numerically the solutions in a few specific cases.

Let us first consider the ratio between the slowing-down densities. Eq. (25)
may be written

~ _2 . - 2* . X ■ E20<m'~m>\ (25a)
PoG2 X2 C12

where the constant
1 — III.X = _____ ~ m*
1 _ m2

is of the order of one (In view of eq. (6), we dropped the first index from 
Gif). For strictly stoichiometric behaviour, we would just have xfx2 on the 
right-hand side of eq. (25a). If m1 =1= in2, the ratio (25a) depends on the 
energy Eo, and in such a way that the fraction of moving atoms of the lighter 
species increases in the upper parts of the energy spectrum. If m1 = in2 = in,
(25a) reduces to

V()G1 .. al. û'21 «it0/A2”
Pq 2 a2 C12 «2 W

(25b)

according to eqs. (10a, b). Then the deviation from stoichiometry does not 
vary over the energy spectrum (for Eo « E) and is determined solely by the 
mass ratio and in. Since in > 0, the lighter species dominates at those energies 
where (25b) is valid.

The ratio between the recoil densities, eq. (28), is energy-independent 
even for inA += m2, as may be seen by inserting

into eq. (28), 

Sa(E0) =

F,
<*1

«i

■ y™1“1 ■
C11

c]2
+ a2

ai
= - - y

a2f2 a2
«2

L21
+

(28a)

where again the first index was dropped from Fij. Here the factor Y depends 
on concentration, and its variation with a! and a2 determines the deviation
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from stoichiometry. For small amounts of one of the constituents, (28a) 
reduces to

F) otj S11(£'o)
F2 a2 S12(E'O)

oc i Gin i
-■^7wl_1(a2 « 1)
<x2 C12

(28b)

(28c)

A useful dimensionless quantity in the calculation of the average number
Ni of displaced z-atoms is the displacement effiency33) Ki, defined by*

E
-----------az • Ki
Ed, i

(33)

Ed,i is the displacement threshold energy for atoms of type i. In the mona
tomic case one obtains27)

m
K = ------------------------ , (34)

¥>(1) - V>(1 “ /n)
6

i.e. 0 < K < — for 0 < m < 1.
7l2

For the numerical examples, we have chosen binary compounds of 
rather different masses : Tungsten Oxide (y = 0.295), Uranium Carbide 
(y = 0.183), and Copper-Gold (y = 0.738). In the calculations we have used 
the two values of m, 0.055, eq. (lid) and 0.333, eq. (lib). Both choices 
m1 =h m2 and m1 = m2 have been considered. In the case of different m-values, 
in = 0.333 has been used for the lighter element, and m = 0.055 for the 
heavier one.

According to eq. (24), the slowing-down density Gt is determined by an 
equation of the form

(35)

Figs, la and lb show the energy dependence of this quantity for W and 
O in W-0 compounds, plotted for concentration 0, 1/4, 1/2, 3/4 and 1, in

* The present model for the displacement number is oversimplified, since it does not take 
into account replacement events. Therefore, the displacement efficiency can become greater than 
0.5, contrary to the result of ref. 33. Although replacements constitute another interesting aspect 
of collision cascades in polyatomic targets, we refrain from including them here, since the available 
models seem to be even less quantitative than those for displacement. In particular, no experi
mental data are known to us for replacement threshold energies for any system.
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25 50 100 200
E0-eV

Fig. 1. Slowing-down densities of each of the two constituents of three binary compounds in 
relative units, eq. (35), as a function of spectral energy _E0. Parameters mø, m pp, etc. refer to the 
scattering law, eq. (10). Note the different energy dependences of the spectra in case of m1 m2.

Full-drawn and stipled lines refer to the heavy and light constituent, respectively.

Fig. la. Tungsten oxide, mg > mpp.
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25 50 100 200
Eo.eV

Fig. Ib. Tungsten oxide, iuq = m^; this graph is presumably less realistic than fig. la.
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Eo, eV
Fig. le. Uranium carbide, mø > mø.
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25 50 100 200

Eq , eV
Fig. Id. Uranium carbide, me = mu; this graph is presumably less realistic than fig. lc.

2*
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25 50 100 200

Eo. eV
Fig. le. Copper-gold alloy, mCu = mAu
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1.0 0.5 0.0 cty/
a

1.0 0.5
b

0.0 du

Fig. 2. Slowing-down densities Gx and G2 of each of the two constituents of three binary com
pounds, normalized to the values of the respective pure media, G, as a function of concentration. 
The ratios GjJG do not depend on spectral energy Eo. In addition to the two combinations of 
scattering parameters used in fig. 1, a third one with = 0.333 has been included for
illustration. Full-drawn and stipled lines refer to the heavy and light constituent, respectively. 
Apart from a constant factor given by eq. (25a) or 25b), thin fulldrawn lines refer to stoichiometric 

variation.
Fig. 2a. Tungsten oxide. The two curves with mg > mpp are presumed to come closest to reality. 
Fig. 2b. Uranium carbide. The two curves with mg > mg are presumed to come closest to reality.

1.0 0.5 0.0 dAu
Fig. 2c. Copper-gold alloy. Only the two curves with mgu = m^u have been included. 
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case of mo > mw and mo = mw, respectively. The variation of the expression 
(35) at fixed energy with composition is illustrated in fig. 2a. We notice that 
the variation of Gt near a$ = 1 is much weaker than the stoichiometric 
variation. The qualitative conclusion appears justified that the total number 
of moving matrix atoms in a nearly pure target is almost unaffected by 
alloying impurities of widely different mass.

This effect can be understood qualitatively. The slowing-down density is 
determined both by the number of atoms set in motion and the time for 
slowing-down. Alloying an impurity of very different mass causes a decrease 
in the former quantity (the recoil density), but an increase in the latter.

As might be expected, this effect is even more pronounced in the case of 
U-C (figs, lc + d and 2b), and less pronounced in Cu-Au (figs, le and 2c).

The recoil density, Fi, is determined by eqs. (27a, b),

Fi = Eq • Ci', Eo <X E, (36)

where Ci = oci'Ki. The variation of the expression (36) with recoil energy Eo 
for W and 0 in W-0 compounds is shown in figs. 3a + b for mo > mw and 
mo = mw, for concentration 0, 1/4, 1/2, 3/4 and 1. For mo > mw, the heavier 
component recoils preferentially. This arises from the sensitivity of the recoil 
density to the steepness of the differential cross section2’ 33>, the latter being 
greatest for the largest value of m according to eq. (9).

The variation of the displacement efficiency Ki with concentration is 
shown in fig. 4a. As one might expect, the displacement efficiency is almost 
independent of concentration in the vicinity of a« = 1. When becomes 
smaller, Ki drops gradually to a significantly lower value. The relatively low 
displacement efficiency of impurities (a « 1) is due to the comparatively 
inefficient energy transfer in collisions with host atoms and the small chance 
for impurity-impurity collisions. The same features are observed for U-C 
and Cu-Au, see figs. 3c-e and 4b + c.

Figs. 5a—c contain the same information as fig. 4. We have plotted the 
factor Y in eq. (28a) as a function of concentration. This factor represents 
the (concentration-dependent) deviation from stoichiometric behaviour of 
the recoil density. The upper and lower limits of Y are determined by eqs. 
(28b, c).

To make sure that our results do not hinge heavily on the detailed assump
tions concerning the displacement process, we estimated in appendix B 
the influence of an atomic binding energy, and especially the significance of 
different binding energies of the two constituents, on the slowing-down 
density.
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25 50 100 200
!d (3/1 )

E0.eV
Fig. 3. Same as fig. 1 for the recoil densities, eq. (36). Note that all energy dependence goes as 

F -2
Fig. 3a. Tungsten oxide, mø >mjy.
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Fig. 3b. Tungsten oxide, mo = mw-
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Fig. 3c. Uranium carbide, mç > mjj.
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Fig. 3d. Uranium carbide, mp = my.
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Fig. 3e. Copper-gold alloy, mCu = mAu-
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1.0 0.5 0.0 au
a b

Fig. 4. Displacement efficiencies K1 and A'2, eq. (33), of the two constituents of three binary com
pounds, as a function of concentration. As in fig. 2, three combinations of scattering parameters 
m1 and m2 were used. Full-drawn and stipled lines refer to the heavy and light constituent, 

respectively. Stoichiometric behaviour would correspond to straight horizontal lines.
Fig. 4a. Tungsten oxide. The two curves with mø > mw are presumed to come closest to reality. 
Fig. 4b. Uranium carbide. The two curves with mø > mjy are presumed to come closest to 

reality.

1.0 0.5 0.0 aAu
Fig. 4c. Copper-gold alloy. Only the two curves with møu = m^u have been included.
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a b
Fig. 5. Ratio of recoil densities of the constituents in three binary compounds, normalized so 
that stoichiometric behaviour would correspond to the dashed horizontal line. As in fig. 2, three 
combinations of scattering parameters and m2 were used. Note the different scale in fig. 5b.

Fig. 5a. Tungsten oxide.
Fig. 5b. Uranium carbide.

Fig. 5c. Copper-gold alloy.

1.0 Ctcu
0.0 Qau
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Fig. 6. The poles of the Laplace transform G(s) for a monatomic medium, as a function of m.
The principal pole at s(°) = 1 has been omitted.

7. Range of Validity of the Asymptotic Solutions

We should like to estimate the range of validity of the asymptotic solutions 
(24) and (27). This is conveniently done by finding the correction terms in 
the asymptotic expansions, i.e. determining residues at subsequent poles of 
the Laplace Transforms, Go(.s’) and F'aÇs).

In the case of a monatomic target, this problem has been discussed in 
ref. 34, in which it is shown that the higher-order poles, s<2), . . ., etc. obey 
the inequalities — i + m< s«) < —i + 1. The positions of the poles s<b, . . ,,s<5\ 
in the monatomic case, for 0 < m < 1, are plotted in fig. 6. No poles are 
found in the interval 0 < s < 1. Therefore, for a monatomic target the 
asymptotic solution has a remarkably large range of validity1).

In the binary or polyatomic case, the situation is substantially more 
complicated because eq. (6) only holds for the principal term in the asymp
totic expansion. The subsequent terms do not only depend on the target (j) 
but also explicitly on the projectile (i). For the sake of simplicity we restrict 
the discussion to binary targets and analyse the possibility of poles ocurring 
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between zero and s = 1. However, since eq. (6) is not generally valid we 
want to treat the problem for an arbitrary projectile, 3. This is conveniently 
done by considering a ternary target (sect. 5) with species 1, 2, 3, but a3 = 0. 
The complete set of solutions of eq. (12) is then given by :

513 = 0

G23 = t)

Ö33 = ^3/ [^31£31 + /^32fi32 ]

512 = ^2 ’ ßl2^^
(j22 = ^2 ’{/51(£11— 1 ) + ßl2E12\lD^
G'32 ~ ^2 ‘{^12^31 + ßü2 I /51(£11~1) + (^12£12 [/^31fi31 + ^32£321}

511 = -^1 '{/^22(e22— 1 ) + ^21£21}/

(i21 = ‘ ß21l^^
Gäl ~ -ßl‘{^21/^32 + /^31 [/^22(£22—I ) + /^21e21 ]}/{-^24/^32e32 + /^31e31 ]}

(37)

(38)

where we have used the notation of sect. 4. Of these equations, only the six 
lower ones are of interest here. Furthermore, because of symmetry we may 
concentrate on the lower three equations. The poles and residues of 5n, 
G21 and S31 determine the number of moving 1-atoms when particles of type 
1, 2, or 3 impinge on a 1-2 compound. Writing 531 in the form

^31

facilitates the discussion.
From eq. (13a) it follows that \ßik\ = °° for s = nil-; otherwise ßik is 

finite and nonzero. According to (13b), the product ßikEik is zero for s = 0, 
positive for s > 0 and negative for s < 0. Therefore, poles of 031 may only 
occur at

(i) s = 0,
(ii) s = ziq or m2, and
(iii) the poles of Gn and 521.

For s = 0, insertion of eqs. (13a) and (13b) into (37) shows that GX1 and 
52i have finite values at this point; G31 has a pole at zero because of the 
vanishing factor /?32e32 + ßai£3i in the denominator.

The occurrence of poles at s = nq or m2 depends on whether or not some 
(or all) of the parameters nq, m2, and zn3 are identical. It can happen that 
531 has a pole here, but not 51X or G21.
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Fig. 7. Deviation of the slowing-down density Gij(E,E0) from asymptotic behaviour. We plot 
reciprocal Laplace transforms Gn, G21, and G31 versus s. For details see text.

Fig. 7a. Moving oxygen atoms in WO3
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The number and distribution of poles in the remaining part of the inter
val will depend on the parameters a/, Ctk, and m/.

We have analysed numerically the case of a W-0 compound bombarded 
with IV, 0 and Xe. The positions and residues of the poles of Gn, G21 and G31 
were determined, and their variation with concentration and choice of 
scattering parameters was investigated. Since the parameters are chosen so 
as to give a good description at low spectral energies, i.e. near s = 1, caution 
is required in drawing detailed physical conclusions from the correction 
terms to asymptotic behaviour.

An example is given in fig. 7a and b. For clarity, we have plotted the 
reciprocal values of Gu, 021 and G31 versus s, so that the poles of the G-func- 
tions show up as zeros, and the residues may be determined from the inverse 
slope of the 1 /G — curve.

Fig. 7a shows the 1/G - functions for oxygen in a WO3 target bombarded 
with oxygen, tungsten, or xenon, corresponding to Gn, G2l or G31, respectively. 
We first note that all three curves pass through s = 1 with identical slopes, as 
it should be expected from the results of sect. 3. Second, we notice that 1 /G31 
has the expected zero at s = 0, and the other two curves do not.

Two additional zeros occur at s2 ~ 0.17 and sx ~ 0.46; these are common 
for all three curves. Thus, the second term in the asymptotic expansion 
varies approximately as l/E/E0 in all three cases. As may be seen from the 
figure, the residues at the second pole sx are comparable in magnitude to the 
residuum at s = 1.

Fig. 7b shows the corresponding curves for tungsten in WO3, bombarded 
with tungsten (Gn), oxygen (G21) or xenon (G31). A very similar behaviour 
is observed, except that an additional zero occurs at s = 0.333 for 1 /G3l. 
Again, we observe that the second term in the expansion varies approximately 
as j/E/Eo-

We conclude that the occurence of poles in the interval between zero and 
one narrows the range of validity of the asymptotic solution as compared to 
the monatomic case. As a rule-of-thumb the second term varies approxima
tely as j/E/E0 as a function of energy.
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8. Discussion

The major uncertain quantity entering the theory is the constant C in the 
power cross section (9), in particular its value and mass dependence for 
m < 1/4, eq. (10b). Therefore, the results presented in fig. 1 for the slowing
down density can at most be considered qualitative. The other graphs, in 
particular figs. 2 and 4, show the slowing-down and recoil densities in a 
suitably normalized form so that the inherent error is minimized.

Consider the recoil density first, and its connection with the number of 
displaced atoms. Previous work in this field21'23) concentrated on the total 
number of displacements created in a compound target by a primary particle. 
The displacement model of Kinchin & Pease36’ was usually adopted as well 
as a strongly simplified model for the scattering cross sections. Baroody21) in 
particular assumed a fixed concentration, <x1 = a2 = y. The main uncertainty 
was the displacement model which, for a binary target, contains at least four, 
perhaps six, essentially unknown parameters, i.e. two displacement thres
holds, two replacement energies and, perhaps, two lattice binding energies. 
In most applications, the displacement and replacement energies were all 
set equal (" = Ea"), and the binding energies were either ignored or set equal 
Ea, too.

In the present calculations, we allowed for more realistic scattering cross 
sections, in particular for different energy dependences of the various cross 
sections involved. Except for appendix B we ignored binding energies, but 
eliminate a substantial part of the remaining uncertainty by plotting individual 
displacement efficiencies rather than defect numbers.

Eig. 4b shows that, for a uranium target with a few per cent alloyed car
bon, the displacement efficiency of uranium atoms is six times as great as 
that of carbon atoms. In addition, when the carbon content increases from 
0 to 40 per cent, the displacement efficiency for uranium remains essentially 
unchanged while the one for carbon increases by a factor of three, approxi
mately linear with concentration. To our knowledge, such pronounced 
deviations from stoichiometric behaviour have not been predicted previously.

We are not aware of any experimental results that could be analysed 
directly in terms of a graph like fig. 4. Experiments to check these predictions 
(e.g. by channeling37)) seem most promising when dealing with low, but 
varying concentration of one of the two species, since then the displacement 
threshold energies may be considered with reasonable confidence to be 
independent of concentration.

3*
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Obviously, fig. 4 predicts a pronounced difference in the behaviour of 
dopant atoms under irradiation between the case of bombarding electrons 
(where single defects dominate) and bombarding heavy ions or fast neutrons 
(where displacement cascades dominate).

Let us now go over to sputtering. According to ref. 28, the flux of sputtered 
atoms is determined by

i) the slowing-down density,
ii) the spatial distribution of deposited energy,

iii) the surface binding energy.

The two key problems in the sputtering of compound targets are

a) how is the total sputtering yield related to the sputtering yields of the 
respective pure targets, and

b) what is the composition of the sputtered material.

We have to note that any deviation from stoichiometric sputtering will 
cause a change in composition of the remaining target material, such that the 
target is no longer homogeneous. Homogeneity, however, is a vital assump
tion entering our basic equations. Thus, the present theory can at most be 
applied to low-dose sputtering experiments, i.e., experiments involving 
sputtering of, say, one monolayer of target atoms. Such experiments have 
been performed on pure metallic targets (e.g. Andersen & Bay13)) but, with 
one exception (see below) not on compound targets. The following con
siderations will, therefore, be kept brief and qualitative.

Il is appropriate to distinguish between sputtering experiments performed 
at low and high bombarding energy, the former category referring to energies 
around or below 1 keV. Pronounced depletion of surface layers due to 
preferential sputtering has been reported in low-energy sputtering experi
ments (e.g. Asada et al.4), Anderson7), Tarng et al. 9>). Because of the small 
penetration depth of low-energy ions, only a very shallow surface layer can 
be involved in the sputtering process proper. The occurrence of a massive 
depleted layer is, therefore, indicative of a competing migrational process. 
Such a process may also be a disturbing factor in high-energy sputtering ex
periments, and its influence needs to be checked by, e.g., variation of the 
target temperature during bombardment.

A number of higher-energy sputtering experiments dealt with the Cu3Au 
system4-6* 8>. In high-dose experiments a gold-rich surface layer was obser
ved5- 6). However, quantitative data on sputtering yields were only determined 
by Ogar et al.8). No bombardment doses were given, but since the sputtered 
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material was detected by neutron activation, one may assume that only few 
atomic layers were removed. The copper:gold sputtering ratio for Ar+ and 
Hg+ bombardment in the 10 keV region was observed to be slightly smaller 
than 3:1. The authors proposed preferred migration of gold atoms to the 
surface as an explanation. Since the observed deviation from stoichiometry 
is rather small (~ 10 °/0) it does not appear feasible to make a definite 
statement on the actual source of nonstoichiometry. The slowing-down den
sities excluding bulk binding forces behave in such a way that preferential 
motion of copper atoms would be predicted (eq. 25b). However, inclusion of 
binding forces produces a shift in the right direction, the magnitude being 
uncertain (appendix B). Inclusion of, e.g., focused collision sequences in the 
sputtering mechanism would seem to enhance the contribution of copper 
atoms rather than decrease it. Finally, if gold atoms should migrate indeed 
preferentially, one might also have to consider the possibility of a lower 
surface binding energy of gold atoms.

Ogar et al. also determined absolute partial sputtering yields for copper 
and gold atoms, respectively. They report a partial sputtering yield for copper 
from the Cu3Au alloy that is about twice as large as the sputtering yield of 
pure copper under equivalent bombardment conditions. It follows from fig. 
2c that such a pronounced effect cannot originate in a drastic change of the 
slowing-down density as compared to the pure target. Neither does it appear 
feasible that the surface binding energy of copper atoms differs by a factor of 
two from the one valid for a pure copper target. We assert the change in 
sputtering yield to be essentially due to the different spatial distribution of 
deposited energy. Indeed, alloying heavy gold atoms to a copper target causes 
a pronounced decrease in ion penetration due to increased importance of 
large-angle scattering1’ 20) and, therefore, increased energy deposition at the 
target surface. A quantitative evaluation is not given here since the measure
ments of Ogar et al. were done on CusAu single crystals while existing cal
culations refer to random targets.

Pronounced deviations are expected from stoichiometric sputtering in 
metallic alloys of very different masses. Figs. 2a and 2b indicate that the 
fluxes of both the heavy and the light constituent increase as compared to the 
pure targets, in terms of the respective concentrations. The flux of heavy 
atoms increases most pronouncedly. However, the ratio of fluxes at any 
given concentration behaves in a more complicated manner. Figs, la and 
lc show that there may be different energy dependences, and comparing, e.g., 
figs, la and lb, one may notice that preferential sputtering of the heavy con
stituent may be predicted from fig. la, and the light one from fig. lb. In case 
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of W03, our preference of the choice of potential constants is such as to 
predict preferential sputtering of W. This preference is, however, not so 
strong as the corresponding one with the uranium carbide system.

Systematic investigations of the sputtering of oxides10) revealed preferen
tial sputtering of oxygen in many cases. Consistently, oxygen happened to be 
the lighter constituent. The analysis indicated a contribution of chemical and 
local-heating effects. From the point of view of the present investigation, it 
would be of considerable interest to have similar experimental results taken 
at low bombardment doses.
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Appendix A

We want to show that the determinant of the system of equations (12) 
has no zero for s > 1. First, it follows from eqs. (13) and (14) that ßtk > 0 
and sue > 1 for s > 1.

Now, let ß = (ßik) be an arbitrary nXn matrix with positive elements, 
ßik > 0, and let e^, where i, k = 1, . . ., n be a set of n2 arbitrary elements. 
We define another nXn matrix A = (Aik) by

Atk = Öik'^ßijSl]

and will now prove the following theorem for the determinant

det (A - ß) =

ßii(sn - 1) + /512e12 + . . . + ßin^m ... - ßin
— ^21 ^22(®22 ~ 1) + ^21e21 + • • • + e2« ... — ß2n

ni ßn2 • • ■ ßnn(Xnn ~ 1 + ßniXni + • • • X ßn n-i^n n-\
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If all elements Eik > 1 then det (Zl - ß) > 0.
The theorem is proved by induction, increasing the dimension of the 

matrix from n—1 to n.

i) The case n = 1 is trivial: det(Zl — ß) = ßn(eii “ 1)

Since ßxl > 0 and en > 1, de/(Zl - /3) > 0.

ii) The general step n — 1 -> n: We first note that if all = 1 then 
det(A - /?) = 0, because the sum of the elements in each row is zero. It is, 
therefore, sufficient to show that for £/*  > 1, det(A - ß) is a strictly increasing 
function of all the £/*,  or:

d
delk

ßm

0

— ß%n

- ßik

ßn2

For reasons of symmetry it is sufficient to consider the case i = 1. We get 
by differentation :

The last determinant is a (n-1) X (n-1) determinant, but in a form not 
suited for direct induction. However, the matrix can be brought into a 
suitable form by defining new quantities eh and ßa so that for i = 2, . . ., n

d
-----det(A - /?) > 0 for all Efk’ > 1. 
d£ik
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1) ßii(jZii — 1) + ßiißii — ßii(Sii ~ 1)
2) ßii > 0
3) £ü > 1

which is evidently possible. For i + k we define Eik = and ßtk = ßik- Then

~ ßzn

+ ßnn-i £nn-i

Here ßlk > 0 and the determinant is positive too, since it is a (n-1) X (n-1)- 
determinant of the type considered.

This proves the theorem.

Appendix B: Effect of Atomic Binding

We want to indicate briefly the effect of atomic binding on energy dissipa
tion. Some results of similar calculations for monatomic targets have been 
reported previously1’ 27> 28), yet without derivation. A detailed discussion 
will be given in a forthcoming paper35), but the main steps - for a polya
tomic medium —will be sketched here.

We only consider the slowing-down density Gij. If we assume that an 
atom of type i loses a binding energy Vi upon recoiling from its rest position, 
the only necessary change in eq. (2a) is replacement of the recoil term 
Gkj(T, Eq) by

- Vk,Eo), (B 1)

while the boundary condition (4) remains unchanged.
In the evaluation for power scattering, eq. (10), the Laplace transforma

tion is carried out conveniently by means of expansion in powers of Vk/E0. 
Then, the recoil term Gkj(s) in eq. (12) is replaced by the expression

2 (B2)
v = o

The resulting system of equations can be solved by perturbation expansion,
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6^(0 = £Gg>(s), (B3)

V

where G$(s) contains v factors of the set (V\, V2, . . .). The zero-order 
term G^(s) is identical with the one calculated in sect. 3, and the first-order 
term follows from the equations

(s)2ßu(s)eik(s) - 2 /M-0 Gÿ (s) =
k k

- - (s + i)2(u/-E1,)fee)ög,(S + i).

k

Only the inhomogeneity on the right-hand side differs from eq. (12). In parti
cular, the highest poles of Gy\s) are determined by the zeros of the deter
minant D(s), just as those of G$Xs). The asymptotic solution Gff(E,E0) 
for E»E0 is, therefore, proportional to E, and the same is true for all 
higher orders Gy (E, Eo). Note especially that the term on the right-hand 
side of (B4) is regular for s > mt. Then, with the notations of sect. 4, the 
asymptotic solutions (s = 1) of (B 4) in the binary case can be written in 
the form

G'A’/G'ff-ß'A’/G'»’-

~ - (2/D<«(2)) + £12( 1 ))(VJE.) x

[(fe(2) - l)fe(2) + I8S1(2)^,(2)] + (/Sla(l)/ftj(l)) x 

(fti(l) + ft2(l))(V2/E0)fti(2)},

where _D(2>(s), £a(s), and ßtk(s) arc defined in eqs. (13a, b) and (22a).
In case of a monatomic medium (i.e. either for = .W2 and arbitrary 

«i or for oq = 1 and arbitrary M2/Mx), eq. (B5) reduces to the previously 
quoted result27’ 28)

Gff/d? ~ - (2 - m>) U/Eo for M, = M2 (B 6)

as it should be.
We have evaluated eq. (B5) numerically for the tungsten-oxygen system. 

We write (B5) in the form

Gff/Gg’-G^/G™- - B,(n/E0) - /(2(V2/EO) (B 7)

and plot Rr and R2 in fig. 8a for oxygen and in fig. 8b for tungsten. It is seen 
that R2 is vanishingly small in both cases. Rr has its greatest value for the 
pure materials and drops off rapidly with increasing concentration of the 
alloyed impurity. This is particularly so in case of fig. 8b.

(B 4)
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Fig. 8. First-order corrections to the slowing-down density due to atomic binding, defined in 
eq. (B7).

Fig. 8a. Oxygen in IV-0 compound (Index (1) refers to oxygen). Note the different scales for 
7?! and R2.

Fig. 8b. Tungsten in 1V-0 compound (Index (1) refers to tungsten). Note the different scales for 
jRx and R2.

1.0 0.5 0.0 a2

Fig. 8c. Equal-mass compound. Same scale for R± and R2.
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Figs. 8a and 8b indicate that the dominating contribution to eq. (B7) is 
due to the fact that moving atoms cannot be observed at their initial recoil 
energy, but at most at the recoil energy minus their respective binding energy. 
The loss of energy during recoiling of former generations of atoms in the 
cascade appears to be of minor significance for the slowing-down density.

Fig. 8c shows a similar graph for an equal-mass compound. Because of 
the possibility of complete exchange of energy between collision partners 1 
and 2, the coefficient R2 in (B7) becomes significant, though still smaller 
than Rv

Figs. 8a-c are representative for most situations of practical interest. 
We conclude that the influence of atomic binding on the slowing-down density 
is essential only for nearly pure materials in case of very different masses, and 
roughly independent of concentration in case of nearly equal masses. The 
correction cannot exceed that of the pure material, except when the binding 
energies themselves undergo substantia] changes due to the presence of the 
alloyed material.

It follows from (B7) that the influence of atomic binding is most pro
nounced near threshold (£'0~V1). In radiation damage one often meets a 
situation where so that the correction is unappreciable at all
energies of practical interest. Therefore, we only evaluated the correction in 
case of the slowing-down density. In sputtering, the threshold energy of 
interest is the surface binding energy, which may well be comparable to 
Vj, so that a correction may be necessary in the lowest parts of the spectrum. 
Figs. 8a, b indicate that for the W-0 system at intermediate concentrations, 
the correction is larger for oxygen than for tungsten. Since the sign is negative 
(eq. B7), the corrections tend to move the deviation from stoichiometric 
behaviour towards dominance of the heavy species in tin1 particle flux.
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